Power Analyzer by Keysight

Power integrity analysis at design time.

PDN阻抗分析和建模:从原理图到PCB布局 PDN阻抗分析和建模:从原理图到PCB布局 我们在这里讲了很多关于信号完整性的内容,但信号完整性其实与电源完整性密切相关。这不仅仅是减少电源/调压器的开关噪声或纹波的问题。在某些设计中,PCB中的PDN阻抗会对您的设计造成不利影响,从而导致电路板中的元件由于电源问题而无法按照设计工作。 这时,了解一些用于PDN阻抗分析的基本模型将起到一定的帮助作用。如果您可以为PDN阻抗建立一些合理准确的模型,则您可以为元件设计适当的去耦网络,以将PDN的阻抗保持在可接受的范围内。 为什么要进行PDN阻抗分析? 高速和高频PCB设计人员通过阅读本文即可知道答案。但是,随着技术要求的不断提高,无论是否情愿,我们所有人都将成为高速和高频PCB设计人员,因此了解PDN阻抗如何影响PCB中信号的行为就变得非常重要。不幸的是,我们在信息整合方面做得并不够好。因此,我很高兴在这里为大家做一个总结。 简而言之,您的PDN阻抗会影响电路的以下几个方面: 电源总线噪声。 由于PCB中的瞬态电流而产生的电压纹波。请注意,由于PDN阻抗是频率的函数,因此开关引起的电压纹波也将是频率的函数。请注意,无论调压器输出中的噪声水平如何,都会产生这些电压瞬变。 电源总线噪声中的阻尼。 在某些情况下,电源总线上的任何纹波都可能显示为振铃(即,阻尼不足的瞬态振荡)。如果去耦电容器的尺寸不正确,或者在去耦网络中没有考虑到去耦电容器的自谐振频率,就会出现这个问题。 所需的去耦水平。过去,由于电容器自谐振频率(~100 MHz)相对较低,因此使用TTL和更快的逻辑系列并不足以确保PCB中实现去耦。因此,设计人员使用层间电容来提供足够的电容,以确保实现去耦。市场上已推出更新款的具有GHz自谐振频率的电容器,它们足以在高速/高频PCB中实现去耦。 回流路径。您的回流电流将遵循最小电阻路径(针对直流电流)或最小电抗路径(针对交流电流)。接地网络中的阻抗会在空间中变化,并且部分取决于信号轨迹与PDN之间的寄生耦合。 电阻压降。由于构成PDN的导体的固有电阻,供电和回流电流的直流电部分将会遭受一定的损耗。下图显示了PDN分析结果示例,说明了特定信号轨迹以下的回流电流和同一接地层中的直流电流。 定时抖动。由于信号的传播时间有限,因此从去耦电容器和调压器产生的电流将需要一些时间才能到达开关元件。当这些信号到达元件时,它们会干扰输出信号,从而有效地在信号的上升时间中产生一些抖动。通常,由于电源轨噪声引起的定时抖动会随着噪声强度以及调压器与元件之间的长度而增加。在长电源轨上,这可能会导致定时抖动达到几百纳秒,从而使数据去同步并提高误码率。 注意此PDN分析仪输出中的信号轨迹 PDN阻抗分析的简化模型 您可以直接从原理图为PDN的阻抗谱及其瞬态响应建模,但前提是您必须考虑到PDN中的寄生效应。在下面的模型中,您会注意到若干电路元素,但是此模型仅包含两个实际元件。第一个是您的电源/调压器,它具有一定的指定输出阻抗Z(输出),并且通常属于RL串联。第二个是去耦电容器,其理想电容为Cc1。其余的电路元素属于寄生元素。Rs和Ls值分别用于固有导体电阻和寄生电源层电感的建模。Rp、Lp和Cp元件代表了电源和接地层之间的寄生耦合(即,层间电容)。 PDN阻抗分析的简化模型。图片来源: nwengineeringllc.com 在分析此模型之前,您需要确定或估计模型中各个元素的值。去耦电容器的值很容易处理;只需从数据表单中获取所需电容器的值即可。层间电容也很容易粗略估算;只需使用载板的介电常数、重叠的接地/电源层面积以及它们在叠层中的距离,即可得到层间电容Cp。剩余的R值可以使用预期的导线尺寸计算。L值需要根据电路各部分的近似回路电感来估算;这些值通常在pH到几个nH之间。
噪声电源轨 如何滤除噪声电源轨 尽管电源在示波器上看起来可能产生干净的电力,但在实际系统中的电源操作可能会产生噪声或对噪声敏感。电源轨道通常需要为系统中的多个设备提供相同电压的电力,但在系统的不同部分需要干净的电力。当出现这种情况时,可能需要在将主轨道上的噪声提供给系统的不同部分之前进行清理。 根据组件操作的频率范围,这可以通过简单的滤波电路、额外的电容,以及在特定情况下使用铁氧体磁珠来完成。因此,在这篇博客中,我将概述在电源轨道上使用不同类型的滤波电路来滤除进入目标设备的电力的一些情况。有时,最好的情况是将一个轨道分成多个轨道,使用多个调节器,而在其他情况下,可以从单个轨道提取并滤波,以向不同的设备提供干净的电力。 在哪里应用滤波以获得干净的电力 我们可以通过查看电源树来可视化在哪里应用滤波以确保干净的电力到达不同的设备。下面的图片显示了一个电源树的示例块图,其中在电源树的不同部分应用了滤波。这张图片假设轨道提供直流电压,并且有几个设备从每个轨道上拉电。 这里的重要背景是频率问题。不同设备在不同频率范围内需要电力,将能够使用不同类型的滤波。例如,对于仅在直流下操作的设备,低通滤波与低截止频率将是合适的。相比之下,具有非常快速I/O的数字设备将需要一个到非常高频率都具有低阻抗的电源轨道,尽管它是从直流轨道上拉电。 不同频率范围内的电力稳定性将决定哪种类型的滤波是合适的。 下表概述了可以使用不同类型滤波的一些示例。 直流负载 低通滤波,可以是高阶滤波电路 低频(直流至MHz) 使用RC或LC电路的低通滤波,需要无极点的传递函数 高频(MHz至GHz) 通常是数字组件的领域,需要具有非常低电感的电容 现在让我们来看看不同频率范围内的一些示例。 直流组件 当一个组件只需要直流电源,意味着电源轨上没有切换动作或交流电流时,低通滤波是适当的,包括高阶低通滤波。这可以通过以下组件或电路之一实现: 低通LC滤波器 低通RC滤波器 铁氧体珠 大电容