增强现实、虚拟手术、肢体替换、医疗设备以及其他新技术需要结合触觉振动电机和反馈,以便让佩戴者充分感受到他们与环境的互动方式。除非这些尖端应用包含了触觉振动和反馈,否则用户将被迫依赖其他四种感官来理解真实或虚拟环境。自从翻盖手机时代以来,支持触觉反馈的低成本组件就已经可用,设计师们的想象力是唯一的限制。
最近一个新客户的询问让我不得不深入了解触觉振动和反馈的世界。如果你是一名音频电子设计师,那么你可能已经熟悉了传感器以及如何将它们与放大器、MCU或其他组件配对。无论你是否熟悉传感器,都存在一个嵌入式软件问题需要解决,特别是当你考虑到用于触发触觉反馈的传感器时。
触觉振动电机有两种类型:可变幅度和可变频率。显然,这些电机可以细分为不同的电机结构,如垂直振荡、直线和偏心旋转质量(ERM)振动电机。ERM电机在旧寻呼机和早期手机中很常见。垂直振荡电机和直线电机在它们对包装施加力的方式上相似。这些电机可以通过一对线路安装到板上或包装上。
上面展示的硬币/煎饼式电机基本上是一个幅度控制的直流电机,其频率可以通过改变电机看到的直流电压从约10000转每分钟变化到约15000转每分钟。驱动这些电机所需的直流电压通常在2到5伏之间,设备需要的电流在约50到约100毫安之间。过去20年的许多研究发现,用于触觉反馈的最佳振动频率范围在150赫兹到180赫兹之间。也有交流版本可用(见下表)。
另一种触觉振动电机是线性谐振执行器(LRA)。这种类型的电机在狭窄的带宽内有强烈的共振。这些设备不应该用于频率控制的触觉反馈,但它们对于电压控制的触觉反馈非常有用,因为它们会在驱动频率下响应(即,它们是交流电机)。
将这些电机引入实际系统并不是什么大挑战,因为它们不会像较大的电机那样产生相同的传导和辐射EMI问题。如果将它们放置在电路板上(即作为SMD组件),应该将它们放置在电路板边缘附近以及能让用户最好感知到振动的区域附近。为这些组件布局电路板时,应像布局任何其他小型直流/交流电机一样。
由于电压和电流要求,将振动电机连接到驱动器时,总是存在阻抗匹配与阻抗桥接之间的问题。触觉振动电机本质上是一种传感器,它能够响应低频电信号输出特定的低频机械振动。
如果你阅读了一些关于传感器的教程,即使是在一些技术性很强的流行网站上,你也会发现一些建议称源IC与传感器之间需要阻抗匹配。这正是人们在EDN和Hyperphysics上找到的建议,直到多次投诉迫使网站所有者更改他们的内容。是否应该使用阻抗匹配或阻抗桥接取决于驱动器的性质。
如果驱动器实质上是一个电流控制的电压源(即,输出阻抗低),那么应该使用阻抗桥接来将高输出电压传输到电机。这基本上是现代音频设备所做的。然而,如果驱动器具有相反的功能,应该选择其阻抗远低于源阻抗的电机。传输线效应在这里不相关,因为我们操作在数百赫兹的范围内。
触觉反馈的一个重要部分是随着系统中其他输入的变化而改变振动感觉。数据可以与外部传感器的一些测量结果一起输入系统,并用于控制触觉振动强度。这些系统可以是开环系统或闭环系统,它们类似于工业控制系统中使用的控制策略。
触觉反馈算法足够轻量,可以嵌入到MCU或小型FPGA中,只要设备有足够的输入来支持产品中的其他功能。触觉反馈算法仍然需要针对特定产品进行设计,这些算法仍然是科学和工程研究的活跃领域。
如果您计划在新的PCB中加入触觉振动和反馈,您应该使用Altium Designer®中的CAD工具来布局您的新电路板并放置触觉振动电机的组件模型。MCAD工具可以帮助您设计电路板,使其整齐地适应其外壳并为制造做好准备。
现在您可以下载免费试用版的Altium Designer,并了解更多关于行业最佳布局、仿真和生产计划工具的信息。今天就联系Altium专家以了解更多。